The longitudinal patterns of alcohol use in older New Zealanders

August 2018
Project commissioned: July 2015
Final report received: July 2018

Prepared for the Health Promotion Agency by:
Massey University-Auckland University Research Collaboration

This document is available at: https://www.hpa.org.nz/research-library/research-publications

Any queries regarding this report should be directed to HPA at the following address:

Health Promotion Agency
PO Box 2142
Wellington 6140
New Zealand
www.hpa.org.nz
enquiries@hpa.org.nz

August 2018
Acknowledgements

HPA would like to thank those respondents who took the time to participate in this research.

The New Zealand Health, Work & Retirement Longitudinal Study (NZHWR): Funding for the Health, Work & Retirement Longitudinal Study 2010 data collection wave was provided by the Ministry of Business, Innovation and Employment (Formerly the Foundation for Research, Science and Technology).

Review of the longitudinal patterns of alcohol use in older New Zealanders: We would like to acknowledge the advice and feedback from our international collaborators: Professor Annie Britton (University College London); Dr Martin Hyde (Swansea University); Professor Alison Moore (University of California, San Diego); Professor Emeritus Christine Savage (Johns Hopkins University); Dr Priscilla Martinez (Alcohol Research Group, University of California, Berkley); Professor Thomas Clausen (University of Oslo); Dr Nadia Minicuci and Dr Ilaria Rocco (National Research Council, Neuroscience Institute, Padova, Italy); and Dr Paul Kowal (World Health Organisation).

NZHWR Research Team: We would like to thank Professors Fiona Alpass and Christine Stephens (School of Psychology, Massey University) who are Principal Investigators on the NZHWR and whose research leadership established this longitudinal project. We would also like to thank Dr Joanne Allen (School of Psychology, Massey University) for her assistance in compiling the NZHWR longitudinal dataset which we utilise for this report and for her valuable feedback throughout this process.

Copyright

The copyright owner of this publication is HPA. HPA permits the reproduction of material from this publication without prior notification, provided that fair representation is made of the material and HPA is acknowledged as the source.

Disclaimer

This research has been carried out by an independent party under contract to HPA. The views, observations and analysis expressed in this report are those of the authors and are not to be attributed to HPA.

Comments

This report has not undergone external peer review.
The longitudinal patterns of alcohol use in older New Zealanders

A report for the Health Promotion Agency
The authors of this report are:

Dr Andy Towers (School of Health Sciences, Massey University)

Professor Janie Sheridan (School of Pharmacy and Centre for Addiction Research, University of Auckland)

Dr David Newcombe (School of Population Health and Centre for Addiction Research, University of Auckland)

Dr Agnes Szabo (School of Health Sciences, Massey University)
Table of Contents

Executive summary
The longitudinal patterns of alcohol use in older New Zealanders

1.0 The longitudinal patterns of alcohol use in older New Zealanders
 1.1 International research on longitudinal drinking patterns in older adults
 1.2 The existing evidence in New Zealand

2.0 Aims of the current study

3.0 The longitudinal dataset & measurements used
 3.1 The NZHWR 2006-to-2016 sample
 3.2 The measurement of alcohol use in all NZHWR waves
 3.3 The covariates identified for analysis
 3.4 The analysis: Latent growth curve modelling, growth mixture modelling, and multinomial logistic regressions

4.0 Results of the study
 4.1 Alcohol use over time: Assessing the general stability of the measures
 4.2 Identifying specific drinking profiles
 4.3 Predicting profile membership
 4.4 Potential clinical implications
 4.5 Comparing levels of health & health behaviours across drinking profiles

Appendix 1
Appendix 2
References
List of Figures

Figure 1: Overview of the five profiles of older New Zealand drinkers ... v
Figure 2: Univariate model of NZHWR alcohol use variables across 10 years for entire longitudinal sample ... 8
Figure 3: Overview of the five profiles of older New Zealand drinkers .. 9
Figure 4: Older adult drinking profile #1 ... 10
Figure 5: Older adult drinking profile #2 .. 11
Figure 6: Older adult drinking profile #3 .. 11
Figure 7: Older adult drinking profile #4 .. 12
Figure 8: Older adult drinking profile #5 .. 12
Figure 9: Physical health trends for each drinking profile from 2006 to 2016 .. 16
Figure 10: Mental health trends for each drinking profile from 2006 to 2016 17
Figure 11: Proportion in each profile that report three or more chronic health conditions 19
Figure 12: Proportion of active smokers in each profile across 10 years ... 19

List of Tables

Table 1: Characteristics of the NZHWR longitudinal sample & NZ comparison population 5
Table 2: A demographic breakdown of each of the five drinking profiles ... 13
Table 3: The meaningful demographic differences between Profiles 2-5 in comparison to characteristics of Profile 1 members .. 15
Table 4: Accuracy of profile classification based solely on age, gender, education level and living standard .. 15
Table 5: Models explaining simple (univariate) change in alcohol use variables over time 23
Table 6: Fit indices for the growth mixture models .. 23
Table 7: Descriptions of each drinking profile in the 5-profile model .. 24
Table 8: Indicators of final model fit .. 24
Table 9: Multinomial logistic regression results ... 25
Table 10: Accuracy of profile classification based solely on age, gender, education level and living standard .. 26
Table 11: Pairwise comparison of baseline physical and mental health across profiles 26
Executive summary

Older adults are at significant risk from alcohol-related harm, yet few studies have explored the patterns of older adult alcohol use over time. New Zealand in particular has very little evidence of research in this area, despite recent studies suggesting that the patterns of alcohol use in older New Zealanders may be more hazardous than seen in their counterparts in other countries.\(^1, 2\)

This report presents a longitudinal assessment of the drinking patterns evident in older New Zealanders over 10 years (2006 to 2016) using data from the Ministry of Business, Innovation and Employment-funded New Zealand Health, Work & Retirement Longitudinal Study at Massey University.

The longitudinal patterns of alcohol use in older New Zealanders

Our analyses indicate that, within a large sample of New Zealanders aged 50 years and over, there are five distinct drinking profiles (Figure 1) which are relatively stable across time. They include a large cohort of older adults drinking relatively infrequently and consuming little on each occasion, but also a substantial number of older New Zealanders drinking frequently and consuming a lot of alcohol every time they drank.

Figure 1: Overview of the five profiles of older New Zealand drinkers

<table>
<thead>
<tr>
<th>Profiles of Older Drinkers</th>
<th>Characteristics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low Frequency of Drinking
Low Quantity per Occasion
(34.8%; n = 915)</td>
<td>A group with a low frequency of drinking, low levels of consumption on days when they do drink, and who experience a small but gradual decrease over time in both drinking frequency and quantity.</td>
</tr>
<tr>
<td>2</td>
<td>High Frequency of Drinking
Low Quantity per Occasion
(30.1%; n = 791)</td>
<td>A group of very frequent drinkers who consume low amounts on each drinking occasion, and show no change (increase or decrease) in the frequency or quantity of alcohol use over time.</td>
</tr>
<tr>
<td>3</td>
<td>Moderate Frequency of Drinking
High Quantity per Occasion
(4.7%; n = 124)</td>
<td>A very small group of drinkers who drink with moderate frequency and they consume a lot on occasions when they do drink (infrequent heavy drinkers). However, both the frequency of drinking and the quantity consumed per occasion reduces across time.</td>
</tr>
<tr>
<td>4</td>
<td>Moderate Frequency of Drinking
Low Quantity per Occasion
(22.6%; n = 594)</td>
<td>A group that tends to drink with moderate frequency, consumes low quantity per drinking occasion, and both drinking frequency and quantity gradually decrease across time.</td>
</tr>
<tr>
<td>5</td>
<td>High Frequency of Drinking
High Quantity per Occasion
(7.9%; n = 207)</td>
<td>A small group of older drinkers who drink frequently and consume a high quantity of alcohol on each drinking occasion (frequent heavy drinkers). Also, while the average quantity consumed decreases slightly over time, the frequency of drinking does not.</td>
</tr>
</tbody>
</table>

Profiles 1, 2 and 4 include approximately 87% of older drinkers whose patterns of consumption pose low immediate risk to health (i.e., they drink either infrequently or
frequently but consume very few drinks on each drinking occasion). However, the remaining two profiles reflect approximately 13% of older drinkers whose alcohol consumption patterns pose serious and immediate risks to their health (i.e., they are drinking with moderate or high frequency and consuming many drinks on each occasion). Critical to identifying older drinkers whose consumption poses risks to their health is understanding who is likely to both drink with high frequency and consume high quantity per occasion.

Older drinkers consuming with higher frequency

The characteristics suggesting an older adult is likely to drink with higher frequency are:

- male
- at the younger stage of older adulthood (i.e., around 60-70 years of age)
- have a moderate to high level of education, and
- have a high economic living standard.

Older drinkers consuming higher quantity per occasion

Our analysis specify two separate sub-populations likely to consume alcohol in high quantities:

- **Heavy drinkers with health issues**: Those who drank large quantities of alcohol on each occasion with moderate frequency (i.e., a high-risk group) had the poorest physical and mental health, and were more likely to have three or more chronic health conditions than other groups of older drinkers.
- **Heavy drinkers without health issues**: Those who drank large quantities of alcohol on each occasion with high frequency (i.e., very high-risk group) had health profiles similar to those drinking at much lower quantities per occasion.

The single characteristic that jointly identified heavy drinking groups with and without health issues was that they were much more likely to be smokers than older drinkers who consumed fewer drinks per drinking occasion.
1.0 The longitudinal patterns of alcohol use in older New Zealanders

1.1 International research on longitudinal drinking patterns in older adults

There are many reasons why older adults choose to drink alcohol, including the use of alcohol for group bonding and social cohesion, as self-medication for perceived health benefits, and as a mechanism to reduce emotional or mental distress. (3-5) Similarly, there is a range of reasons that older adults choose to increase, reduce or give up drinking, including marital separation, retirement, the onset of poor health, the idea that reducing alcohol use would be beneficial, and because their doctor, family or friends suggested they should reduce their drinking. (6-9)

In order to understand the factors that might promote or inhibit drinking across older adulthood, we need to:

- explore whether frequency and quantity of drinking changes or remains stable over older adulthood
- explore whether frequency and quantity of drinking changes uniformly across older adults or distinct groups can be identified based on similar drinking patterns
- quantify the differential sociodemographic characteristics of older drinkers with disparate drinking patterns
- quantify how promoting/inhibiting factors for alcohol use influence drinking patterns.

1.1.1 Stability of drinking across older adulthood

Britton and her colleagues have utilised the Whitehall II longitudinal study of British Civil Servants to produce some of the most informative models of adult drinking patterns to date. The most recent publication by Knott, Bell and Britton (10) explored the longitudinal trajectories of seven groups of adult drinkers from mid-life through to early older adulthood.

When the Whitehall II participants were first interviewed in mid-life (aged 35-55), the authors identified groups of drinkers based on frequency and quantity of drinking. Using a United Kingdom standard drink equivalent of eight grams of alcohol, these groups included a non-drinking group, a light drinking group consuming up to approximately seven drinks weekly, and further graduated drinking groups up to the riskiest who were drinking more than 32 drinks weekly.

Following these groups across two decades, the authors found that drinking frequency and quantity were broadly stable for light to moderate drinking groups; those who were heavy consumers at baseline showed the greatest reduction in their drinking with the advance of age; and the probability of giving up alcohol was relatively unlikely for all groups.

These findings are in line with the results reported by McEvoy et al. (11) using the Rancho Bernardo Study of Healthy Ageing in the western United States. They modelled changes in alcohol use (frequency and quantity) over a 24-year period with a sample of community dwelling Californians aged 50-89 at baseline. They found that alcohol consumption remained relatively stable over two decades in all except the oldest adults at baseline, with a large proportion continuing to exceed recommended drinking guidelines. Similarly, Brennan, and Schutte (12) estimated change trajectories in average drinking over 20 years for community dwelling men and women aged 55-65 at first assessment in the eastern United States. They
found that average alcohol consumption was relatively stable and consistent through to 70 years of age, after which both men and women experienced a gradual decline. However, this decline was more pronounced in women.

In combination, international studies suggest that drinking frequency and quantity are relatively stable across mid-life and into older adulthood. Furthermore, they suggest that older adults should not be considered a homogenous drinking group; instead a wide range of drinking patterns are likely within any older cohort ranging from complete abstention through to excessive or risky drinking.

1.1.2 Potential differences in sociodemographic and health characteristics among older drinking groups

A recent study by Halonen et al. (13) provides more insight into the potential differences in sociodemographic and health characteristics that exist between distinct subgroups of older drinkers. The authors explored 12-year drinking trajectories of older public-sector employees in the transition from work to retirement in Finland. Using government guidelines defining risky drinking as weekly consumption of 16+ units (for women) or 24+ units (for men), they identified three distinct drinking groups:

1. Consistent low-risk drinking (81% of the sample).
2. Generally low-risk drinking, but with a spike in risky drinking immediately after retirement (12% of the sample).
3. Consistent high-risk drinking with a gradual reduction across retirement (7%).

The authors found important sociodemographic differences among these drinking groups. Those in the consistent (yet gradually declining) risky drinking group were more likely to be male; with higher socioeconomic status and higher education level; a current or former smoker; experiencing mental health issues and reporting job strain; working in a city; and undertaking limited physical activity. Those in the group with a temporary increase in retirement-related drinking shared some of these same characteristics, but could be differentiated from consistent risky drinkers in that they had lower socioeconomic status and education levels; were more likely to be former smokers; and were less likely to work in a city.

These findings resonate the results reported by Moore et al. (14) and Platt, Sloan and Costanzo (15) who independently found distinct groups of drinkers in an older cohort from the United States. In both studies, high or increasing alcohol use was more likely to occur in individuals who were male; of European ethnicity; single; with higher socioeconomic status and education; and current smokers.

These findings suggest that subgroups of drinkers that are likely to exist within older adult populations can be differentiated based on critical sociodemographic and health characteristics. This offers a valuable potential vector for health professionals in their screening of older adults’ alcohol use patterns, and their aim to identify those with potentially hazardous drinking behaviours.

1.2 The existing evidence in New Zealand

In their comprehensive literature review of alcohol use in older New Zealanders, Hodges and Maskill (16) highlighted the lack of available data with which to undertake extensive modelling of older New Zealanders’ drinking patterns. Historically, older adults (aged 65+) were
excluded from national-level alcohol and drug use surveys between 2000 and 2010. While the reports themselves offer no rationale for this, such age-related exclusion is common worldwide and reflects on-going and concerning ageism in alcohol-related policy, research and service provision.\(^{(17)}\)

However, more recent New Zealand efforts to explore older adults’ alcohol use across time have been undertaken and reveal similar findings to international studies. Specifically, McKenzie, Carter and Filoche\(^{(18)}\) used multiple waves from Statistics New Zealand’s Survey of Family, Income & Employment (SoFIE) dataset to explore time-related drinking patterns in older New Zealanders. They found that New Zealand’s older population expresses a range of drinking behaviours from abstention to light drinking, through to heavy or risky drinking. Furthermore, alcohol use was higher among older adults who were male, healthier and wealthier. Lastly, they found that across an 8-year timeframe, the rate and level of drinking were stable with minimal change.

Despite this recent work exploring older adult drinking habits in New Zealand, a lot remains unclear. Specifically, it is not clear whether different yet consistent drinking profiles exist within the older adult population (e.g., abstainers, low-risk drinkers, moderate drinkers). Furthermore, it is important, from a public health screening and intervention perspective, to assess whether individuals with particularly risky drinking profiles might be distinguishable from non-risky drinkers based on key sociodemographic and health factors.

There is one dataset in New Zealand that has both the sample size, longitudinal data collection waves, and multitude of predictor variables to facilitate an extensive review of the longitudinal patterns and predictors of alcohol use in older adults: The New Zealand Health, Work & Retirement Longitudinal Study (NZHWR).
2.0 Aims of the current study

The current study intended to fill the gap between international research and existing national studies by exploring whether distinct drinking profiles existed within a sample of older New Zealanders; whether those drinking profiles were stable or drinking patterns changed across time; and whether such drinking profiles could be differentiated based on key sociodemographic and health-related factors.

Using the NZHWR longitudinal data from 2006 to 2016, the aims of the study were two-fold:

1. To identify whether distinct groups of New Zealand older adults could be identified based on their drinking patterns, and
2. If so, to identify whether these distinct groups of drinkers could be differentiated based on their sociodemographic and health characteristics.
3.0 The longitudinal dataset & measurements used

In order to identify the existence of distinct groups of New Zealand older drinkers, we used ten years of data (constituting six data waves from 2006 to 2016) from the NZHWR.

The Massey University-based NZHWR is a government-funded study established in 2006 to follow thousands of New Zealanders aged 55-70 biennially to understand factors that determine health and independence in older adults, and aims to assess current health, wealth, social, working and demographic status of older New Zealanders.

Subsequent waves (from 2010 onward) expanded the age range of the sample to include New Zealanders aged 50 years and over. The NZHWR is a national-level study of healthy ageing reflective of New Zealanders aged 50 and over. The collection of data for the NZHWR relies on both postal survey of the sample and face-to-face interviews of a subsample of participants.

3.1 The NZHWR 2006-to-2016 sample

In order to use as many cases from across the ten years of data collection as possible, we included all individuals in the study who had started in 2006 (baseline) and had participated in at least two waves of the NZHWR.

Table 1 provides an overview of the demographics of the sample at baseline in 2006 in comparison to the 2006 New Zealand population aged 50 years and over. The NZHWR 2006 sample was broadly reflective of the wider 50 years and over population, though there were slightly more workers in the NZHWR sample. The NZHWR specifically over-samples Māori resulting in a greater Māori proportion than in the general population aged 50 years and over. This disparity in ethnicity is unlikely to reduce the representativeness of our results, given that our previous report (1) illustrates that ethnicity itself is not a driver of differential drinking patterns.

Table 1: Characteristics of the NZHWR longitudinal sample & NZ comparison population

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2,632</td>
<td>1,211,118</td>
</tr>
<tr>
<td>Mean age (S.D)</td>
<td>61.08 (4.53)</td>
<td></td>
</tr>
<tr>
<td>% Female</td>
<td>53.4</td>
<td>52.7</td>
</tr>
<tr>
<td>% Māori</td>
<td>50.7</td>
<td>6.8</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working</td>
<td>66.3</td>
<td>48.8</td>
</tr>
<tr>
<td>Retired</td>
<td>21.7</td>
<td>47.2</td>
</tr>
<tr>
<td>Other</td>
<td>12.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married/partnered</td>
<td>72.5</td>
<td>69.8</td>
</tr>
<tr>
<td>Divorced/separated</td>
<td>15.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Widow/widower</td>
<td>8.2</td>
<td>13.1</td>
</tr>
<tr>
<td>Single/never married</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Educational qualifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No qualification</td>
<td>33.2</td>
<td>32.4</td>
</tr>
<tr>
<td>High School</td>
<td>23.5</td>
<td>33.5</td>
</tr>
<tr>
<td>Post-High School/Trade</td>
<td>31.4</td>
<td>23.8</td>
</tr>
<tr>
<td>Tertiary</td>
<td>11.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>

1 Dr Andy Towers (report co-author) is a member of the Massey University team managing the NZHWR study. Access to the NZHWR data by the collaboration authoring this report was facilitated through Dr Towers.
3.2 The measurement of alcohol use in all NZHWR waves

The NZHWR has used the Alcohol Use Disorders Identification Test – Consumption (AUDIT-C) (19) screen to assess alcohol use in all waves from baseline in 2006. The AUDIT-C is a 3-item abbreviated form of the AUDIT (20), which is one of the world’s most well-validated screening tools of risky or hazardous drinking. The AUDIT has been a key alcohol use screen for previous New Zealand alcohol use surveys (21); is appropriate for use in older adults (22); and recommended for use in New Zealand primary health care settings. (23, 24)

The AUDIT-C specifically focuses on ‘consumption’ indicators: the frequency and typical quantity of alcohol use, and the frequency of binge drinking. The 3-item AUDIT-C is equivalent to the 10-item AUDIT in identifying hazardous drinkers across a range of populations (25); is recommended for use in primary health care by the United States National Institute on Alcohol Abuse and Alcoholism (26); and has already been used in New Zealand older adult population surveys. (2) For the purpose of this report, which focuses on trends in drinking patterns over time, all non-drinkers at baseline were removed from the dataset.

The AUDIT-C items are as follows:

<table>
<thead>
<tr>
<th>The questions from the AUDIT-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Frequency: How often do you have a drink containing alcohol?</td>
</tr>
<tr>
<td>2. Quantity: How many drinks containing alcohol do you have on a typical day when drinking?</td>
</tr>
<tr>
<td>3. Binge drinking: How often do you have six or more drinks on one occasion?</td>
</tr>
</tbody>
</table>

3.3 The covariates identified for analysis

All covariates were based on self-report; however, age, gender, and Māori descent were cross-validated against participants’ information registered in the Electoral Roll. The most recent NZHWR technical report provides significantly more detail regarding the longitudinal process of cross-validation for those interested. (27)

Additional demographic covariates included: marital status (married or in de facto relationship vs. neither married nor in de facto relationship); work status (working full- or part-time, retired, and other); educational qualification (no qualification, secondary school, post-secondary/trade certificate, tertiary); and place of residence (rural vs. urban).

Financial and economic wellbeing was assessed using the short form version of the ‘Economic Living Standards Index’ (ELSI) developed by the New Zealand Ministry of Social Development. (28)

Health-related covariates included: physical and mental health measured by the Short Form Health Survey 12v2 (SF12v2) (29); number of alcohol-related chronic conditions diagnosed by a health care professional; and smoking (current smokers, past smokers, life-time non-smokers).

A more detailed description of the measures is reported in Appendix 1.

3.4 The analysis: Latent growth curve modelling, growth mixture modelling, and multinomial logistic regressions

To gain a better understanding of older New Zealanders’ drinking patterns, we employed latent growth curve analysis and growth mixture modelling. In order to ascertain whether change in drinking frequency, quantity and bingeing over a 10-year period was steady or
changing, we employed Latent Growth Curve analysis testing both linear and non-linear change trajectories. \(^{(30)}\) Next, we employed Growth Mixture Modelling, which allows researchers to identify subgroups (also called profiles) of individuals who demonstrate similar change trajectories over time along a number of dimensions. \(^{(31)}\) In this case, we aimed to explore groups of older adults whose scores in terms of quantity and frequency of drinking were similar over a 10-year period. Finally, data were subjected to a Multinomial Logistic Regression analysis to determine which sociodemographic and health-related variables were predictive of profile membership. For a more detailed description of the data analytic plan, see Appendix 2.
4.0 Results of the study

4.1 Alcohol use over time: Assessing the general stability of the measures

In order to understand the direction and rate of change in alcohol use across ten years of data from the NZHWR, we first estimated the trajectory of the three separate alcohol use variables (i.e., average levels of drinking frequency, quantity consumed and binge drinking frequency) to identify whether there was any observable change from 2006 to 2016.

Figure 2 illustrates the average of the change in frequency of alcohol use, the quantity consumed and the rate of binge drinking for the entire NZHWR sample between 2006 and 2016. There appeared to be a slight decrease in all drinking variables across this timeframe, with a particular drop in binge drinking between 2014 and 2016.

![Figure 2: Univariate model of NZHWR alcohol use variables across 10 years for entire longitudinal sample](image)

Analyses (see Table 5 in Appendix 2) indicated that both the frequency of alcohol use and the average quantity consumed could be explained with a linear model (i.e., a gradual reduction over time in both). However, binge drinking best reflects a quadratic model such while it gradually decreased between 2006 and 2014, it decreased more rapidly between 2014 and 2016. This suggests that the relative frequency of drinking and average quantity consumed by this sample is slightly declining, but that binge drinking has recently reduced in a more rapid rate.

4.2 Identifying specific drinking profiles

Subsequent to exploring the general trend in alcohol use across time for the entire sample, our goal was to assess whether specific subgroups of older drinkers existed within the wider sample who shared similar patterns of drinking across time (e.g., high frequency but low quantity). Identifying such groups would allow us to understand:

- whether distinct groups of older drinkers exist
- the characteristics of distinct drinking frequency and quantity patterns
- the proportion of older adults characterized by specific drinking patterns
- if these drinking patterns have distinct sociodemographic and health-related correlates.
We attempted to identify distinct drinking profiles using all three alcohol use variables (frequency, quantity, and binge) available for the NZHWR sample. However, the difference in patterns between drinking frequency and quantity (linear trajectory) and binge drinking (quadratic trajectory) resulted in models with poor statistical ‘fit’.

We thus dropped the binge drinking variable from our model, and proceeded to model drinking profiles based on the combination of drinking frequency and quantity. Individuals with risky drinking tendencies such as binge drinking would still be identified in the frequency-quantity based model, and the emerging drinking profiles clearly indicate subgroups of drinkers with binge drinking tendencies.

Using the revised ‘frequency-quantity’ approach, we compared models with a range of different drinking profiles (see Table 6 in Appendix 2). The 5-profile model produced the most statistically and theoretically sound solution. The general characteristics of the five profiles are highlighted in Figure 3 below.

Figure 3: Overview of the five profiles of older New Zealand drinkers

<table>
<thead>
<tr>
<th>Profiles of Older Drinkers</th>
<th>Characteristics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Low Frequency of Drinking Low Quantity per Occasion (34.8%; n = 915)</td>
<td>A group with a low frequency of drinking, low levels of consumption on days when they do drink, and who experience a small but gradual decrease over time in both drinking frequency and quantity.</td>
<td></td>
</tr>
<tr>
<td>2 High Frequency of Drinking Low Quantity per Occasion (30.1%; n = 791)</td>
<td>A group of very frequent drinkers who consume low amounts on each drinking occasion, and show no change (increase or decrease) in the frequency or quantity of alcohol use over time.</td>
<td></td>
</tr>
<tr>
<td>3 Moderate Frequency of Drinking High Quantity per Occasion (4.7%; n = 124)</td>
<td>A very small group of drinkers who drink with moderate frequency and they consume a lot on occasions when they do drink (infrequent heavy drinkers). However, both the frequency of drinking and the quantity consumed per occasion reduces across time.</td>
<td></td>
</tr>
<tr>
<td>4 Moderate Frequency of Drinking Low Quantity per Occasion (22.6%; n = 594)</td>
<td>A group that tends to drink with moderate frequency, consumes low quantity per drinking occasion, and both drinking frequency and quantity gradually decrease across time.</td>
<td></td>
</tr>
<tr>
<td>5 High Frequency of Drinking High Quantity per Occasion (7.9%; n = 207)</td>
<td>A small group of older drinkers who drink frequently and consume a high quantity of alcohol on each drinking occasion (frequent heavy drinkers). Also, while the average quantity consumed decreases slightly over time, the frequency of drinking does not.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Profile numbers indicate the order in which drinking groups emerged from the analysis - they are not suggesting increasing risk.

Figures 4 to 8 display the longitudinal trajectories of drinking frequency and quantity for the five distinct profiles of older drinkers across time. Each graph illustrates the ‘average’ level of drinking frequency and quantity for older adults with that profile in each year of the study. Consequently, some graphs will illustrate drinking frequency and/or quantity levels that fall...
between levels of the scale (e.g., between ‘1 or 2’ drinks and ‘3 or 4’ drinks). This simply reflects the statistical averaging of individual responses and indicates that grouped responses tended to fall across these scale anchors.

The results in Figures 4 to 8 illustrate that the five profiles have distinct patterns of drinking frequency and average consumption quantity. While some patterns were stable across time (e.g., Profile 2), others show decreases either in frequency or in quantity consumed or both (e.g., Profile 3). What is potentially concerning is the finding that two of these profiles (Profiles 3 and 5) reflected small groups of older drinkers who, when drinking, consumed 5-6 drinks on each occasion. The Health Promotion Agency advises people to drink no more than 4 (for women) and 5 (for men) standard drinks on a single occasion to reduce the risk of injury².

Figure 4: Older adult drinking profile #1

[Graph showing drinking profile #1: Low Frequency-Low Quantity]

This profile represents approximately 1/3 of this sample. It reflects a group that has a low frequency of drinking, low levels of consumption on days when they do drink, and who have experienced a small but gradual decrease overtime in both drinking frequency and quantity.

Profile #2: High Frequency-Low Quantity
30.1% (n=791)

Representing almost a further 1/3 of this sample this profile reflects the popular conception of older adult drinkers as frequent but low-quantity consumers. There is no perceptible change (increase or decrease) in the frequency or quantity of alcohol use over time.

Figure 5: Older adult drinking profile #2

Profile #3: Moderate Frequency-High Quantity
4.7% (n=124)

This reflects a very small group of older adults who drink moderately frequently but when they do drink they consume a lot on each occasion. Both the frequency of drinking and the quantity consumed per occasion reduces across time.

Figure 6: Older adult drinking profile #3
Figure 7: Older adult drinking profile #4

Profile #4: Moderate Frequency-Low Quantity
22.6% (n=594)

This profile represents approximately 1/4 of this sample of older New Zealanders. This group of drinkers tends to drink with moderate frequency, consumes low quantity per drinking occasion, and both drinking frequency and quantity gradually decrease across time.

![Graph showing profile #4](image)

Figure 8: Older adult drinking profile #5

Profile #5: High Frequency-High Quantity
7.9% (n=207)

This profile reflects a small sub-set of older drinkers who drink frequently and consume a high amount on each drinking occasion. While the average quantity consumed decreases slightly over time the frequency of drinking does not.

![Graph showing profile #5](image)
Table 2: A demographic breakdown of each of the five drinking profiles

<table>
<thead>
<tr>
<th></th>
<th>Profile 1</th>
<th>Profile 2</th>
<th>Profile 3</th>
<th>Profile 4</th>
<th>Profile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: mean (standard deviation)</td>
<td>61.35 (4.58)</td>
<td>61.22 (4.57)</td>
<td>60.31 (4.42)</td>
<td>60.94 (4.50)</td>
<td>60.17 (4.22)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>70.1%</td>
<td>45.8%</td>
<td>36.3%</td>
<td>55.2%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Male</td>
<td>29.9%</td>
<td>54.2%</td>
<td>63.7%</td>
<td>44.8%</td>
<td>86.5%</td>
</tr>
<tr>
<td>Educational Qualification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No qualification</td>
<td>41.7%</td>
<td>21.0%</td>
<td>63.8%</td>
<td>28.2%</td>
<td>39.8%</td>
</tr>
<tr>
<td>Secondary school</td>
<td>22.4%</td>
<td>24.9%</td>
<td>14.7%</td>
<td>25.8%</td>
<td>21.9%</td>
</tr>
<tr>
<td>Post-secondary/trade</td>
<td>27.2%</td>
<td>36.7%</td>
<td>19.0%</td>
<td>33.8%</td>
<td>29.4%</td>
</tr>
<tr>
<td>Tertiary</td>
<td>8.7%</td>
<td>17.3%</td>
<td>2.6%</td>
<td>12.2%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married or de facto</td>
<td>64.7%</td>
<td>81.3%</td>
<td>54.8%</td>
<td>74.0%</td>
<td>76.4%</td>
</tr>
<tr>
<td>Not married nor de facto</td>
<td>35.3%</td>
<td>18.7%</td>
<td>45.2%</td>
<td>26.0%</td>
<td>23.6%</td>
</tr>
<tr>
<td>Work Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>30.2%</td>
<td>23.8%</td>
<td>20.2%</td>
<td>20.1%</td>
<td>20.8%</td>
</tr>
<tr>
<td>Working</td>
<td>69.8%</td>
<td>76.2%</td>
<td>79.8%</td>
<td>79.9%</td>
<td>79.2%</td>
</tr>
<tr>
<td>Place of Residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>21.1%</td>
<td>19.9%</td>
<td>21.8%</td>
<td>18.8%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Urban</td>
<td>78.9%</td>
<td>80.1%</td>
<td>78.2%</td>
<td>81.2%</td>
<td>76.2%</td>
</tr>
<tr>
<td>Economic Living Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardship</td>
<td>26.2%</td>
<td>5.0%</td>
<td>38.1%</td>
<td>12.5%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Comfortable</td>
<td>37.8%</td>
<td>27.7%</td>
<td>29.9%</td>
<td>38.1%</td>
<td>29.2%</td>
</tr>
<tr>
<td>Good</td>
<td>36.0%</td>
<td>67.3%</td>
<td>32.0%</td>
<td>49.4%</td>
<td>57.8%</td>
</tr>
</tbody>
</table>

Note: All % reflect column (within profile) proportions not row (between profile) proportions
Table 2 on page 13 provides a breakdown of the basic sociodemographic characteristics of each of these five profiles. Approximately 70% of the drinkers in Profile 1 (Low Frequency-Low Quantity) were female, which stands in direct contrast to Profile 5 (High Frequency-High Quantity) of which females constituted less than 14%. Further, approximately 64% of those in Profile 3 (Moderate Frequency-High Quantity) had no school qualifications in comparison to only 21% of Profile 2 drinkers (High Frequency-Low Quantity). However, these were only potential disparities in sociodemographic characteristics, and required further statistical assessment as to their ability to predict actual differences among drinking profiles.

4.3 Predicting profile membership

Next, we explored differences in sociodemographic composition among drinking profiles. Specifically, we used multinomial logistic regression to compare the characteristics of members of Profiles 2 through 5 with the characteristics of members in Profile 1 (low frequency-low quantity). This indicates the degree to which each profile is unique in comparison to Profile 1, or whether they share common sociodemographic characteristics. The blue box below provides the sociodemographic characteristics of Profile 1 members from Table 2, against which all other profiles were compared.

<table>
<thead>
<tr>
<th>Profile 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Low Frequency-Low Quantity)</td>
</tr>
<tr>
<td>• Average age: 61</td>
</tr>
<tr>
<td>• Gender: 70% Female</td>
</tr>
<tr>
<td>• Marital status: 65% married/partnered</td>
</tr>
<tr>
<td>• Work status: 70% working</td>
</tr>
<tr>
<td>• Education: 64% high school only or no qualifications</td>
</tr>
<tr>
<td>• Place of residence: 79% urban</td>
</tr>
<tr>
<td>• Living Standard: 74% comfortable or good level</td>
</tr>
</tbody>
</table>

The results of the initial model indicated that, despite apparent differences in Table 2 among profiles in marital status, work status and place of residence, none of these three characteristics could reliably differentiate among profiles. This means that members of drinking Profiles 2 through 5 were statistically just as likely as those in Profile 1 to be married/partnered, be working, and be living in a city or large town (See Appendix 2 for the actual statistical calculations and model outcomes).

We then excluded these three factors from our analysis and re-ran our model. The revised model indicated that membership in Profiles 2 through 5 could be reliably differentiated from membership of Profile 1 based on age, gender, education level, and economic living standard. Table 3 on the following page illustrates the key differences in sociodemographic characteristics that could be used to differentiate members of Profiles 2 through 5 from the members of Profile 1 who were low frequency and low quantity drinkers.

In general, compared to those in profiles with more frequent and/or higher quantity drinking, our lowest level drinkers (Profile 1) tended to be slightly older, female, and have a lower economic living standard.
Finally, we assessed the accuracy of our classification of participants into the five profiles based solely on information about their age, gender, education level, and economic living standard. The results in Table 4 indicate that the classification for Profiles 1 and 2 would be relatively accurate (64% and 71%, respectively). This is not surprising given the large size of these profiles. However, for Profiles 3 and 4, we would not be able to identify group members just based on these sociodemographic data, and classification was also poor for Profile 5 (4%). This suggests that other variables beyond age, gender, education level, and economic living standard are responsible for dictating membership of the last three drinking profiles.

<table>
<thead>
<tr>
<th>Profile 2</th>
<th>Profile 3</th>
<th>Profile 4</th>
<th>Profile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Frequency – Low Quantity</td>
<td>Moderate Frequency – High Quantity</td>
<td>Moderate Frequency – Low Quantity</td>
<td>High Frequency – High Quantity</td>
</tr>
<tr>
<td>Age</td>
<td>No difference to Profile 1</td>
<td>Slightly more likely to be younger</td>
<td>No difference to Profile 1</td>
</tr>
<tr>
<td>Gender</td>
<td>More likely to be male</td>
<td>Much more likely to be male</td>
<td>More likely to be male</td>
</tr>
<tr>
<td>Educational qualification</td>
<td>Much more likely to have higher educational qualifications</td>
<td>More likely to have lower educational qualifications</td>
<td>Slightly more likely to have higher educational qualifications</td>
</tr>
<tr>
<td>Economic living standard</td>
<td>Slightly more likely to have a higher living standard</td>
<td>No difference to Profile 1</td>
<td>Slightly more likely to have a higher living standard</td>
</tr>
</tbody>
</table>

Finally, we assessed the accuracy of our classification of participants into the five profiles based solely on information about their age, gender, education level, and economic living standard. The results in Table 4 indicate that the classification for Profiles 1 and 2 would be relatively accurate (64% and 71%, respectively). This is not surprising given the large size of these profiles. However, for Profiles 3 and 4, we would not be able to identify group members just based on these sociodemographic data, and classification was also poor for Profile 5 (4%). This suggests that other variables beyond age, gender, education level, and economic living standard are responsible for dictating membership of the last three drinking profiles.

| Table 3: The meaningful demographic differences between Profiles 2-5 in comparison to characteristics of Profile 1 members |
|---|---|---|---|---|
| Profile 2 | Profile 3 | Profile 4 | Profile 5 |
| High Frequency – Low Quantity | Moderate Frequency – High Quantity | Moderate Frequency – Low Quantity | High Frequency – High Quantity |
| Age | No difference to Profile 1 | Slightly more likely to be younger | No difference to Profile 1 | Slightly more likely to be younger |
| Gender | More likely to be male | Much more likely to be male | More likely to be male | Much more likely to be male |
| Educational qualification | Much more likely to have higher educational qualifications | More likely to have lower educational qualifications | Slightly more likely to have higher educational qualifications | Slightly more likely to have lower educational qualifications |
| Economic living standard | Slightly more likely to have a higher living standard | No difference to Profile 1 | Slightly more likely to have a higher living standard | Slightly more likely to have a higher living standard |

4.4 Potential clinical implications

These results suggest that those seeking to identify older drinkers consuming at higher frequency (but not higher quantity) should consider screening males who are at the younger stage of older adulthood (i.e., approximately between the ages of 60-70), with a moderate to high level of education, and who likely have a high economic living standard.
4.5 Comparing levels of health & health behaviours across drinking profiles

Having identified key sociodemographic similarities and differences in the membership of each drinking profile, we then assessed whether profiles could be differentiated based on levels of health and health behaviours.

4.5.1 Physical & mental health trends

Levels of physical health are strongly associated with alcohol use in the existing international literature, both as a correlate and a likely outcome of risky or long-term alcohol use. (32) Figure 9 illustrates the levels of physical health for each of the five drinking profiles at baseline and across the subsequent 10 years, with higher SF12 scores indicating better physical health. It is clear that the five profiles did not share the same level of health at baseline, and that these differences between groups were largely maintained across time.

Figure 9: Physical health trends for each drinking profile from 2006 to 2016

Our analysis showed that there was a significant difference among profiles in levels of physical health at baseline in 2006.3 Specifically, those in Profile 1 (Low Frequency-Low Quantity) and Profile 3 (Moderate Frequency-High Quantity) had significantly lower physical health scores than the other three profiles. Those in Profile 2 (High Frequency-Low Quantity) reported significantly better physical health than all profiles, except Profile 5 (High Frequency-High Quantity).

Over the 10 years of study, levels of physical health significantly declined for those in Profiles 1, 2, 4, and 5 which is a general pattern of age-related physical health decline found around the world. (33) In contrast, those in Profile 3 (Moderate Frequency-High Quantity) had levels of physical health that started low and remained low over the course of the study, with no statistically significant change.

3 $F(4,2376) = 37.44, p < .001, \mu^2 = 0.06$
The finding that older adults consuming at higher frequency but lower quantity (i.e., commonly associated with ‘moderate’ drinking) have better health than other drinkers may appear to reflect the common assumption that moderate drinking is protective of health. However, we would advise strongly against making this assumption. It is more likely that these trends reflect distinctions among drinking profiles in the levels of economic living standards.

Recent research in New Zealand shows that apparent health benefits of moderate drinking is actually the result of older moderate drinkers being wealthier than other drinking groups and, therefore, being able to afford healthier lifestyles. In line with that finding, our results in Table 3 show that older drinkers in Profiles 1 and 3 did have significantly lower levels of economic living standards than those in other drinking profiles. In this respect, we suggest that differences in physical health among profiles are likely to be driven by disparities in wealth, rather than drinking pattern. This is also consistent with later findings in this report concerning the links between risky drinking and chronic health conditions.

Figure 10 illustrates the differences among drinking profiles in the levels of mental health both at baseline and across the 10 years of study, with higher SF12 scores indicating better mental health.

Figure 10: Mental health trends for each drinking profile from 2006 to 2016

Disparities in mental health levels resembled those seen with physical health, with the five profiles displaying markedly different levels of mental health at the start of the study in 2006. Again, those in Profile 3 (Moderate Frequency-High Quantity) had significantly poorer mental health at baseline than the other four profiles. Those in Profile 2 (High Frequency-Low Quantity), on the other hand, showed significantly better mental health than the rest of the profiles.

\[F(4,2376) = 23.03, \ p < .001, \ \mu^2 = 0.04 \]
Mental health trajectories were stable for Profiles 1, 2, 3, and 5, indicating no significant increase or decrease in mental health over 10 years. For Profile 4 (Moderate Frequency-Low Quantity), results revealed a slight significant increase in mental health from 2008 to 2016.

4.5.2 Chronic conditions related to alcohol use

Figure 11 displays the percentage of those indicating three or more alcohol-related chronic conditions (i.e., cancer; diabetes, blood pressure; heart trouble; and stroke) in each profile across 10 years of the study.

There was a significant difference among profiles in reporting three or more alcohol-related chronic conditions in any of the data collection waves. One quarter of participants in Profile 3 (Moderate Frequency-High Quantity) reported three or more chronic conditions in one or more data collection waves. This contrasts with the lower proportion of such conditions in Profile 1 (19%; Low Frequency-Low Quantity), Profile 2 (7%; High Frequency-Low Quantity), Profile 4 (11%; Moderate Frequency-Low Quantity), and Profile 5 (10%; High Frequency-High Quantity), which suggests that Profile 3 is a distinct group of sick older drinkers.

This suggests that higher levels of alcohol-related chronic conditions are evident in the profile characterised by moderately frequent but decreasing consumption levels (Profile 3). Previous research shows that the onset of alcohol-related chronic conditions we measured (i.e., cancer, diabetes, blood pressure, heart trouble and stroke) are likely to trigger a significant reduction or total cessation in drinking in older populations. Furthermore, the finding that those in Profile 1 (the least risky drinkers) have the second highest levels of such conditions may actually support this suggestion. It is possible that those in Profile 1 (the least risky drinkers) may be reporting high rates of alcohol-related chronic conditions, partly because they were previously drinking at more risky levels prior to entry into this study.

4.5.3 Smoking status

We compared the proportion of smokers in each of the five drinking profiles with the results illustrated in Figure 12. Our analysis indicates a significant difference among profiles in smoking status. The results in Figure 12 highlight that drinking quantity rather than frequency is strongly associated with smoking status. Specifically, those profiles whose members consumed the highest average quantity (Profiles 3 and 5) were much more likely to be active smokers than members of the other profiles.

The largest proportion of active smokers was in Profile 3 (Moderate Frequency-High Quantity), with over one-third of members being active smokers in each data collection wave. This stands in contrast to Profile 4 (Moderate Frequency-Low Quantity), where the proportion of active smokers never exceeded 15% in any given wave and was often less than 10%.

\[\chi^2(4) = 70.83, p < .001, \text{ Cramer's } V = .164 \]

\[\chi^2(4) = 109.27, p < .001, \text{ Cramer's } V = .204 \]
Figure 11: Proportion in each profile that report three or more chronic health conditions

Figure 12: Proportion of active smokers in each profile across 10 years
Appendix 1

Description of sociodemographic and health-related covariates

Gender, age and ethnicity: The gender and date of birth reported by participants are assessed for consistency against those previously reported (gender, date of birth) and information from the Electoral Roll (gender, year of birth range). Information on Māori descent is populated from the Electoral Roll but participants complete a longer section on Māori identity. We use the Māori descent indicators here because oversampling was based on descent as opposed to self-identification.

Marital status: Participants’ marital status was included in all NZHWR waves as a checklist containing the following six categories: legally married; civil union/de facto/partnered relationship; permanently separated from legal spouse; divorced or marriage dissolved; widow/widower; and never legally married. For analytical purposes, the first two and the last three response options were combined into married or in de facto relationship and neither married nor in de facto relationship categories.

Work status: Work status was assessed in all NZHWR waves using a checklist containing the following categories: full time paid employment (including self-employment); part-time paid work (including self-employment); retired with no paid work; full-time homemaker; full-time students; unemployed and seeking work; and not in the workforce – other. For analytical purposes, three broader categories were created: working (full- or part-time), retired, and other.

Highest educational qualification: In all waves of the NZHWR, participants were asked to indicate their highest level of attained educational qualification using the following four categories: no qualification; secondary school; post-secondary/trade certificate; tertiary.

Place of residence: Participants’ categorisation into either rural or urban residence was based on participant address and the corresponding meshblock unit for that address.

Economic living standard: The short form version of the ‘Economic Living Standards Index’ (ELSI) developed by the New Zealand Ministry of Social Development was used to assess financial and economic wellbeing. ELSI is a multi-dimensional measurement tool assessing: restrictions on ownership of assets and social participation; economising behaviour; and self-reported satisfaction with standard of living. A total score can be derived by summing all items (range: 0 - 31) with higher scores indicating better financial and economic wellbeing.

Physical health and mental health: Participant levels of physical health and mental health were measured using the respective physical health and mental health component summary scores on the self-report SF-12v2. The physical heath score reflects perceptions of four domains of physical wellbeing: physical functioning; physical limitations; bodily pain; and perceived general health. The mental health score reflects perceptions of four domains of mental wellbeing: vitality; social functioning; emotional problems; and perceived mental health. Participant physical and mental health summary scores were normed for the older New Zealand population using coefficients developed from the New Zealand Health Survey.
Chronic health conditions: The calculation of total number of co-morbid health conditions experienced was based on the use of chronic condition checklists included in all waves of the NZHWR. For each iteration of this checklist across each NZHWR wave, participants were required to indicate whether a doctor, nurse, or other health care professional had told them they had any of the following health problems: skin cancer; other cancer; diabetes; epilepsy; blood pressure; heart trouble; asthma; respiratory conditions; ulcers; chronic liver trouble; bowel disorders; hernia or rupture; chronic kidney or urinary tract condition; chronic skin condition; arthritis or rheumatism; hepatitis; sight impairment; hearing impairment; and stroke. In our analyses, we focused only on the existence of specific conditions that previous research has linked to alcohol use, specifically: cancer; diabetes, blood pressure; heart trouble; and stroke.

Smoking status: Participants in all waves of the NZHWR were asked to indicate if they considered themselves to be a regular smoker (yes/no). Those who responded ‘yes’ were asked to indicate the number of cigarettes smoked on an average day. Non-regular smokers were asked to indicate if they had ever been a regular smoker (yes/no). For analytical purposes, two variables were created. The first one makes a distinction between current smokers and current non-smokers. The second variable further differentiates among current smokers, past smokers, and life-time non-smokers.
Appendix 2

Statistical analysis and data analytic plan

To gain a better understanding of older New Zealanders’ drinking patterns, we employed latent growth curve analysis and growth mixture modelling. Latent growth curve analysis was used to model change in drinking frequency, quantity and bingeing over a 10-year period and tested both linear and non-linear change trajectories. \(^{(30)}\) Latent growth curve models have two important parameters: intercept and slope. The intercept refers to the average baseline score, whereas the slope indicates the average rate of change over time.

The slope can be positive (gradually increasing over time), negative (gradually decreasing over time), or non-significant (stable over time). Importantly, with this technique, researchers can estimate non-linear change trajectories as well. For example, it is possible that quantity increases only up to a certain point when it slowly plateaus out.

Next, we employed growth mixture modelling. This data analytic strategy allows researchers to identify subsets of individuals who demonstrate similar change trajectories over time along a number of dimensions. \(^{(31)}\) In this case, we aimed to explore groups of older adults whose scores in terms of quantity and frequency of drinking were similar over a 10-year period.

One of the main advantages of growth mixture modelling is that it accounts for heterogeneity in the sample. \(^{(40)}\) As opposed to assuming that quantity and frequency of drinking are generally decreasing, increasing or stable in older adults, this data analytic technique is capable of detecting groups of individuals whose alcohol use might increase over time and simultaneously find groups with decreasing or stable alcohol use.

Finally, data were subjected to a multinomial logistic regression analysis to determine which socio-demographic and health variables were predictive of profile membership. One profile was selected to be the reference group. This means that the likelihood of being assigned to one of the profiles is relative to the likelihood of being assigned to the reference group based on socio-demographic characteristics or health variables.

Statistical analysis for the growth mixture models

Table 5 provides the results of our analysis to identify the model that best explains the patterns of alcohol use frequency, quantity and binge drinking for this sample between 2006 and 2016.

The results indicated that both the frequency of alcohol use and the average quantity consumed could be explained with a linear model. This suggests that any change over time in the frequency of use and the average quantity consumed is actually steady (in this case, a gradual reduction). However, these results also indicated that trends in binge drinking best reflected a quadratic model, such that trends abruptly change at points over time (in this case, a more rapid reduction in binge drinking in 2014 than seen prior to this point).
Table 5: Models explaining simple (univariate) change in alcohol use variables over time

<table>
<thead>
<tr>
<th></th>
<th>χ²</th>
<th>df</th>
<th>χ²/df</th>
<th>CFI</th>
<th>RMSEA (90%CI)</th>
<th>SRMR</th>
<th>ΔCFI</th>
<th>Best Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>831.93</td>
<td>19</td>
<td>43.79</td>
<td>0.944</td>
<td>0.128 (.120; .135)</td>
<td>.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>134.51</td>
<td>16</td>
<td>8.41</td>
<td>0.992</td>
<td>0.053 (.045; .062)</td>
<td>.018</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>Quadratic</td>
<td>51.78</td>
<td>12</td>
<td>4.32</td>
<td>0.997</td>
<td>0.035 (.026; .046)</td>
<td>.014</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>307.63</td>
<td>19</td>
<td>16.19</td>
<td>0.952</td>
<td>0.079 (.071; .087)</td>
<td>.094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>101.91</td>
<td>16</td>
<td>6.37</td>
<td>0.986</td>
<td>0.047 (.038; .056)</td>
<td>.044</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>Quadratic</td>
<td>55.47</td>
<td>12</td>
<td>4.62</td>
<td>0.993</td>
<td>0.039 (.029; .049)</td>
<td>.020</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Binge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>939.17</td>
<td>19</td>
<td>49.43</td>
<td>0.874</td>
<td>0.139 (.131; .146)</td>
<td>.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>231.67</td>
<td>16</td>
<td>14.48</td>
<td>0.970</td>
<td>0.073 (.065; .082)</td>
<td>.069</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td>Quadratic</td>
<td>119.15</td>
<td>12</td>
<td>9.93</td>
<td>0.985</td>
<td>0.059 (.050; .069)</td>
<td>.034</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

Recommended thresholds for indices of model fit:
- CFI > .95
- RMSEA < .06 with the upper bound of the confidence interval lower than .08
- SRMR < .08
- CFI-difference test (ΔCFI): Model fit improved if increase in CFI > .01

Change in alcohol use over time: Growth mixture modelling

Subsequent to establishing the general trends in alcohol use for the entire sample across time, our goal was to assess whether cohorts of older drinkers existed who shared similar patterns of drinking across time.

Table 6 illustrates the fit indices for the five different models produced, comparing solutions with profiles ranging from 2 to 6. Technically the threshold for a viable profile is that each profile represents at least 5% of the sample. This 5-profile model includes one group (Profile 3), which only just reaches this threshold. However, we have chosen to retain this profile and the 5-profile solution because it is statistically and theoretically sound. The resultant profiles reflect very interesting and quantitatively discrepant groups of drinkers that will help inform our understanding of the very broad nature of drinking in older New Zealanders.

Table 6: Fit indices for the growth mixture models

<table>
<thead>
<tr>
<th># of drinking profiles</th>
<th>LMR-LRT</th>
<th>AIC</th>
<th>BIC</th>
<th>ABIC</th>
<th>Entropy</th>
<th>Posterior Probabilities</th>
<th>Best Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 profiles</td>
<td>10135.276***</td>
<td>56766.35</td>
<td>56889.73</td>
<td>56823.01</td>
<td>.936</td>
<td>.981-.984</td>
<td></td>
</tr>
<tr>
<td>3 profiles</td>
<td>4204.604***</td>
<td>52464.97</td>
<td>52617.72</td>
<td>52535.11</td>
<td>.945</td>
<td>.954-.980</td>
<td></td>
</tr>
<tr>
<td>4 profiles</td>
<td>2267.345***</td>
<td>50150.04</td>
<td>50332.17</td>
<td>50233.67</td>
<td>.916</td>
<td>.919-.967</td>
<td></td>
</tr>
<tr>
<td>5 profiles</td>
<td>1653.67*</td>
<td>48464.37</td>
<td>48675.87</td>
<td>48561.49</td>
<td>.925</td>
<td>.924-.970</td>
<td></td>
</tr>
<tr>
<td>6 profiles</td>
<td>1226.943 ns</td>
<td>47216.27</td>
<td>47457.15</td>
<td>47326.88</td>
<td>.924</td>
<td>.913-.970</td>
<td></td>
</tr>
</tbody>
</table>

Recommended thresholds for indices of model fit:
- LMR-LRT: Model with this # of profiles produces significantly better fit than previous model.
- AIC, BIC, and ABIC: Lower values indicate better fit
- Entropy: Above .80 but closer to 1.0 is best
- Posterior probabilities: Above .80 but closer to 1.0 is best
Multinomial logistic regression for assessing demographic differences in profile membership

The initial multinomial logistic regression analysis compared Profiles 2 through 5 with the demographic characteristics of Profile 1 using the demographic variables highlighted in Table 2. Table 7 offers an overview of the proportion of the sample represented by each of the five profiles, as well as an indication of the alcohol use frequency and quantity for each profile (including whether this frequency and quantity changes over time). This analysis indicated that marital status, work status, and place of residence were non-significant predictors. They were thus excluded from the final model.

Table 7: Descriptions of each drinking profile in the 5-profile model

<table>
<thead>
<tr>
<th>Profile</th>
<th>N</th>
<th>% of sample</th>
<th>Initial Drinking Frequency</th>
<th>Frequency slope</th>
<th>Initial Drinking Quantity</th>
<th>Frequency slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile 1</td>
<td>915</td>
<td>34.8%</td>
<td>Low</td>
<td>-6.392***</td>
<td>Low</td>
<td>-5.202***</td>
</tr>
<tr>
<td>Profile 2</td>
<td>791</td>
<td>30.1%</td>
<td>High</td>
<td>-0.664, ns</td>
<td>Low</td>
<td>-0.219, ns</td>
</tr>
<tr>
<td>Profile 3</td>
<td>124</td>
<td>4.7%</td>
<td>Moderate</td>
<td>-2.116***</td>
<td>Moderate</td>
<td>-3.678***</td>
</tr>
<tr>
<td>Profile 4</td>
<td>594</td>
<td>22.6%</td>
<td>Moderate</td>
<td>-6.419***</td>
<td>Low</td>
<td>-4.053***</td>
</tr>
<tr>
<td>Profile 5</td>
<td>207</td>
<td>7.9%</td>
<td>High</td>
<td>-0.996, ns</td>
<td>Moderate</td>
<td>-2.324*</td>
</tr>
</tbody>
</table>

*<.05; *** p<.001; ns = no significant change over time

Table 8 highlights the indicators of model fit for this final model. It reveals that the final model has a good statistical fit to the data, and that it is a significantly better fit than an intercept-only model. The likelihood ratio statistics indicated that each of the predictors in the final model had a significant effect on the overall model.

Table 8: Indicators of final model fit

<table>
<thead>
<tr>
<th>Model Fitting Criteria</th>
<th>Likelihood Ratio Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>Chi-Square</td>
</tr>
<tr>
<td>Goodness-of-fit Indices</td>
<td>Pearson</td>
</tr>
<tr>
<td></td>
<td>Deviance</td>
</tr>
<tr>
<td>Model Fit Indices</td>
<td>Intercept Only</td>
</tr>
<tr>
<td></td>
<td>Final</td>
</tr>
<tr>
<td>Individual Predictors</td>
<td>Age 2006</td>
</tr>
<tr>
<td></td>
<td>ELSI Short Form Score 2006</td>
</tr>
<tr>
<td></td>
<td>Highest Educational Qualification 2006</td>
</tr>
<tr>
<td></td>
<td>Gender</td>
</tr>
</tbody>
</table>

Pseudo R-square results for this model indicate how well the predictors in the final model explain group membership. These results (Cox & Snell: 0.218; Nagelkerke: 0.232;
McFadden: 0.088) indicated that this model had some predictive power, but that the limited number of predictors did not necessarily explain the majority of variance in group membership.

The results in Table 9 illustrate the parameter estimates in our multinomial logistic regression, indicating the degree to which each predictor differs statistically for each profile in comparison to Profile 1.

Table 9: Multinomial logistic regression results

<table>
<thead>
<tr>
<th>In comparison to Profile 1</th>
<th>B</th>
<th>Std. Error</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp (B)</th>
<th>95% Confidence Interval for Exp(B)</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Profile 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.378</td>
<td>.802</td>
<td>8.784</td>
<td>1</td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age Wave 1</td>
<td>-.009</td>
<td>.012</td>
<td>.568</td>
<td>1</td>
<td>.451</td>
<td>.991</td>
<td>.967</td>
<td>1.015</td>
<td></td>
</tr>
<tr>
<td>ELSI 2006</td>
<td>.122</td>
<td>.010</td>
<td>140.091</td>
<td>1</td>
<td>.000</td>
<td>1.130</td>
<td>1.107</td>
<td>1.153</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>.258</td>
<td>.055</td>
<td>21.765</td>
<td>1</td>
<td>.000</td>
<td>1.294</td>
<td>1.161</td>
<td>1.442</td>
<td></td>
</tr>
<tr>
<td>[Gender=Male]</td>
<td>-.860</td>
<td>.113</td>
<td>57.566</td>
<td>1</td>
<td>.000</td>
<td>.423</td>
<td>.339</td>
<td>.528</td>
<td></td>
</tr>
<tr>
<td>Profile 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>4.770</td>
<td>1.632</td>
<td>8.539</td>
<td>1</td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age Wave 1</td>
<td>-.079</td>
<td>.026</td>
<td>8.879</td>
<td>1</td>
<td>.003</td>
<td>.924</td>
<td>.878</td>
<td>.973</td>
<td></td>
</tr>
<tr>
<td>ELSI 2006</td>
<td>-.018</td>
<td>.015</td>
<td>1.563</td>
<td>1</td>
<td>.211</td>
<td>.982</td>
<td>.954</td>
<td>.995</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>-.463</td>
<td>.126</td>
<td>13.597</td>
<td>1</td>
<td>.000</td>
<td>.629</td>
<td>.492</td>
<td>.805</td>
<td></td>
</tr>
<tr>
<td>[Gender=Male]</td>
<td>-1.684</td>
<td>.239</td>
<td>49.659</td>
<td>1</td>
<td>.000</td>
<td>.186</td>
<td>.116</td>
<td>.297</td>
<td></td>
</tr>
<tr>
<td>Profile 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-.125</td>
<td>.826</td>
<td>.023</td>
<td>1</td>
<td>.880</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age Wave 1</td>
<td>-.024</td>
<td>.013</td>
<td>3.402</td>
<td>1</td>
<td>.065</td>
<td>.977</td>
<td>.952</td>
<td>1.001</td>
<td></td>
</tr>
<tr>
<td>ELSI 2006</td>
<td>.058</td>
<td>.009</td>
<td>39.645</td>
<td>1</td>
<td>.000</td>
<td>1.059</td>
<td>1.041</td>
<td>1.079</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>.129</td>
<td>.058</td>
<td>4.919</td>
<td>1</td>
<td>.027</td>
<td>1.137</td>
<td>1.015</td>
<td>1.274</td>
<td></td>
</tr>
<tr>
<td>[Gender=Male]</td>
<td>-.516</td>
<td>.120</td>
<td>18.470</td>
<td>1</td>
<td>.000</td>
<td>.597</td>
<td>.472</td>
<td>.755</td>
<td></td>
</tr>
<tr>
<td>Profile 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>3.173</td>
<td>1.272</td>
<td>6.219</td>
<td>1</td>
<td>.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age Wave 1</td>
<td>-.079</td>
<td>.020</td>
<td>15.661</td>
<td>1</td>
<td>.000</td>
<td>.924</td>
<td>.888</td>
<td>.961</td>
<td></td>
</tr>
<tr>
<td>ELSI 2006</td>
<td>.074</td>
<td>.015</td>
<td>23.185</td>
<td>1</td>
<td>.000</td>
<td>1.076</td>
<td>1.045</td>
<td>1.109</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>-.183</td>
<td>.088</td>
<td>4.292</td>
<td>1</td>
<td>.038</td>
<td>.832</td>
<td>.700</td>
<td>.900</td>
<td></td>
</tr>
<tr>
<td>[Gender=Male]</td>
<td>-2.731</td>
<td>.239</td>
<td>130.731</td>
<td>1</td>
<td>.000</td>
<td>.065</td>
<td>.041</td>
<td>.104</td>
<td></td>
</tr>
</tbody>
</table>

Table 10 shows how accurately we could classify participants into the five profiles just based on information about their age, gender, education level, and ELSI score. Based on these analyses, we can conclude that age, gender, education and ELSI significantly differentiated among drinking profiles. However, they did so much better for Profiles 1 and 2, while they did not explain the profile configurations for Profiles 3 through 5.
Table 10: Accuracy of profile classification based solely on age, gender, education level and living standard

<table>
<thead>
<tr>
<th>Observed Profile Membership</th>
<th>Profile 1</th>
<th>Profile 2</th>
<th>Profile 3</th>
<th>Profile 4</th>
<th>Profile 5</th>
<th>Percent Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile 1</td>
<td>483</td>
<td>275</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>63.6%</td>
</tr>
<tr>
<td>Profile 2</td>
<td>218</td>
<td>530</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>70.6%</td>
</tr>
<tr>
<td>Profile 3</td>
<td>49</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0.0%</td>
</tr>
<tr>
<td>Profile 4</td>
<td>234</td>
<td>297</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.0%</td>
</tr>
<tr>
<td>Profile 5</td>
<td>43</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3.9%</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>44.3%</td>
<td>54.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.9%</td>
<td>44.0%</td>
</tr>
</tbody>
</table>

Exploring differential levels of physical and mental health for each profile and changes across time

Table 11 illustrates the results of pairwise comparisons between each pair of profiles with regard to their physical and mental health, and highlights significant differences. At baseline (2006), those in Profile 2 had significantly higher levels of physical health than all other profiles except Profile 5, and significantly higher levels of mental health than all other profiles.

Table 11: Pairwise comparison of baseline physical and mental health across profiles

<table>
<thead>
<tr>
<th>Pairwise Comparisons</th>
<th>Physical Health 2006</th>
<th>Mental Health 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Difference</td>
<td>s.e.</td>
<td>Sig.</td>
</tr>
<tr>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>Profile 1</td>
<td>Profile 2</td>
<td>5.44* 0.50 0.00 -6.79 -4.09</td>
</tr>
<tr>
<td></td>
<td>Profile 3</td>
<td>1.68 1.01 0.46 -1.07 4.43</td>
</tr>
<tr>
<td></td>
<td>Profile 4</td>
<td>-3.62 0.54 0.00 -5.09 -2.16</td>
</tr>
<tr>
<td></td>
<td>Profile 5</td>
<td>-3.84 0.79 0.00 -5.99 -1.68</td>
</tr>
<tr>
<td></td>
<td>Profile 1</td>
<td>5.44* 0.50 0.00 4.09 6.79</td>
</tr>
<tr>
<td></td>
<td>Profile 3</td>
<td>7.12 1.01 0.00 4.35 9.88</td>
</tr>
<tr>
<td></td>
<td>Profile 4</td>
<td>1.82 0.55 0.01 0.32 3.31</td>
</tr>
<tr>
<td></td>
<td>Profile 5</td>
<td>1.60 0.80 0.26 -0.57 3.77</td>
</tr>
<tr>
<td></td>
<td>Profile 1</td>
<td>-1.68 1.01 0.46 -4.43 1.07</td>
</tr>
<tr>
<td>Profile 2</td>
<td>Profile 2</td>
<td>-7.12 1.01 0.00 -9.88 -4.35</td>
</tr>
<tr>
<td></td>
<td>Profile 3</td>
<td>-5.30 1.03 0.00 -8.12 -2.48</td>
</tr>
<tr>
<td></td>
<td>Profile 4</td>
<td>-5.52 1.18 0.00 -8.75 -2.28</td>
</tr>
<tr>
<td></td>
<td>Profile 5</td>
<td>3.62 0.54 0.00 2.16 5.09</td>
</tr>
<tr>
<td></td>
<td>Profile 1</td>
<td>-1.82 0.55 0.01 -3.31 -0.32</td>
</tr>
<tr>
<td></td>
<td>Profile 2</td>
<td>5.30 1.03 0.00 2.48 8.12</td>
</tr>
<tr>
<td></td>
<td>Profile 3</td>
<td>-0.21 0.82 1.00 -2.46 2.03</td>
</tr>
<tr>
<td></td>
<td>Profile 4</td>
<td>3.84* 0.79 0.00 1.68 5.99</td>
</tr>
<tr>
<td></td>
<td>Profile 1</td>
<td>-1.60 0.80 0.26 -3.77 0.57</td>
</tr>
<tr>
<td></td>
<td>Profile 2</td>
<td>5.52 1.18 0.00 2.28 8.75</td>
</tr>
<tr>
<td></td>
<td>Profile 3</td>
<td>0.21 0.82 1.00 -2.03 2.46</td>
</tr>
</tbody>
</table>
Table 11 (Continued)

<table>
<thead>
<tr>
<th>Pairwise Comparisons</th>
<th>Mean Difference</th>
<th>s.e.</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>Profile 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile 2</td>
<td>-4.30*</td>
<td>0.53</td>
<td>0.00</td>
<td>-5.76</td>
</tr>
<tr>
<td>Profile 3</td>
<td>3.23*</td>
<td>1.09</td>
<td>0.02</td>
<td>0.27</td>
</tr>
<tr>
<td>Profile 4</td>
<td>-2.49*</td>
<td>0.58</td>
<td>0.00</td>
<td>-4.07</td>
</tr>
<tr>
<td>Profile 5</td>
<td>-1.83</td>
<td>0.85</td>
<td>0.20</td>
<td>-4.16</td>
</tr>
<tr>
<td>Profile 1</td>
<td>4.30*</td>
<td>0.53</td>
<td>0.00</td>
<td>2.84</td>
</tr>
<tr>
<td>Profile 3</td>
<td>7.53*</td>
<td>1.09</td>
<td>0.00</td>
<td>4.55</td>
</tr>
<tr>
<td>Profile 4</td>
<td>-2.49*</td>
<td>0.58</td>
<td>0.02</td>
<td>0.21</td>
</tr>
<tr>
<td>Profile 5</td>
<td>-1.83</td>
<td>0.85</td>
<td>0.20</td>
<td>-0.49</td>
</tr>
<tr>
<td>Profile 2</td>
<td>-7.53*</td>
<td>1.09</td>
<td>0.00</td>
<td>-10.52</td>
</tr>
<tr>
<td>Profile 4</td>
<td>-5.72*</td>
<td>1.11</td>
<td>0.00</td>
<td>-8.76</td>
</tr>
<tr>
<td>Profile 5</td>
<td>-5.07*</td>
<td>1.28</td>
<td>0.00</td>
<td>-8.55</td>
</tr>
<tr>
<td>Profile 2</td>
<td>-1.82*</td>
<td>0.59</td>
<td>0.02</td>
<td>-3.42</td>
</tr>
<tr>
<td>Profile 3</td>
<td>5.72*</td>
<td>1.11</td>
<td>0.00</td>
<td>2.68</td>
</tr>
<tr>
<td>Profile 5</td>
<td>0.65</td>
<td>0.89</td>
<td>0.95</td>
<td>-1.77</td>
</tr>
<tr>
<td>Profile 2</td>
<td>2.49*</td>
<td>0.58</td>
<td>0.00</td>
<td>0.90</td>
</tr>
<tr>
<td>Profile 3</td>
<td>1.83</td>
<td>0.85</td>
<td>0.20</td>
<td>-0.49</td>
</tr>
<tr>
<td>Profile 4</td>
<td>-2.47*</td>
<td>0.86</td>
<td>0.03</td>
<td>-4.81</td>
</tr>
<tr>
<td>Profile 5</td>
<td>5.07*</td>
<td>1.28</td>
<td>0.00</td>
<td>1.58</td>
</tr>
<tr>
<td>Profile 4</td>
<td>-0.65</td>
<td>0.89</td>
<td>0.95</td>
<td>-3.08</td>
</tr>
</tbody>
</table>

Table 12 illustrates the results for models estimating the trajectories of change in physical and mental health over the 10 years of the study. The results in this table highlight that models exploring the rate or trajectory of change did not fit for Profile 3 (Moderate Frequency-High Quantity), but did for the four remaining profiles. This is because – as evidenced in Table 12 – Profile 3 was the only profile in this sample that did not show any change over time in either physical health or mental health (i.e., they had the lowest physical and mental health at baseline, and across time these health levels did not change). Levels of physical health followed a linear decline in all other profiles, while only Profile 4 illustrated a change in mental health (an improvement) from baseline to 2016.

Table 12: Models explaining simple (univariate) change in physical and mental health over time

<table>
<thead>
<tr>
<th></th>
<th>(\chi^2)</th>
<th>df</th>
<th>(\chi^2/df)</th>
<th>CFI</th>
<th>RMSEA (90%CI)</th>
<th>SRMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile 1</td>
<td>95.92</td>
<td>51</td>
<td>1.88</td>
<td>0.988</td>
<td>.031 (.021; .041)</td>
<td>0.035</td>
</tr>
<tr>
<td>Profile 2</td>
<td>127.2</td>
<td>51</td>
<td>2.49</td>
<td>0.974</td>
<td>.043 (.034; .053)</td>
<td>0.046</td>
</tr>
<tr>
<td>Profile 3</td>
<td>94.74</td>
<td>51</td>
<td>1.86</td>
<td>0.909</td>
<td>.084 (.057; .109)</td>
<td>0.119</td>
</tr>
<tr>
<td>Profile 4</td>
<td>130.7</td>
<td>51</td>
<td>2.56</td>
<td>0.966</td>
<td>.051 (.041; .062)</td>
<td>0.063</td>
</tr>
<tr>
<td>Profile 5</td>
<td>70.23</td>
<td>51</td>
<td>1.38</td>
<td>0.976</td>
<td>.043 (.011; .066)</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Recommended thresholds for indices of model fit:
- CFI > .95
- RMSEA < .06 with the upper bound of the confidence interval lower than .08
- SRMR < .08
We assessed the stability of physical and mental health trends for each profile across time. The results in Table 13 indicate that all except Profile 3 experienced significant decline in physical health across waves, with the greatest rate of decline evident in Profile 1 whose baseline health was the lowest of all Profiles.

The results for mental health illustrate that all except Profile 4 experienced stable levels of mental health across time. Those in Profile 4 (who had moderate levels of mental health at baseline) experienced the only significant increase across time; there has been a low but significant increase the past 4 years after an initial reduction post-baseline.

Table 13: Intercepts and slopes of mental and physical health across profiles

<table>
<thead>
<tr>
<th>Profile</th>
<th>N</th>
<th>Initial Physical Health</th>
<th>Physical health slope (linear)</th>
<th>Physical health slope (quadratic)</th>
<th>Initial Mental Health</th>
<th>Mental Health slope (linear)</th>
<th>Mental Health slope (quadratic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile 1</td>
<td>915</td>
<td>Low</td>
<td>-5.497***</td>
<td>1.992*</td>
<td>Moderate</td>
<td>0.705 ns</td>
<td>0.309 ns</td>
</tr>
<tr>
<td>Profile 2</td>
<td>791</td>
<td>High</td>
<td>-6.273***</td>
<td>2.487*</td>
<td>High</td>
<td>0.502 ns</td>
<td>-0.999 ns</td>
</tr>
<tr>
<td>Profile 3</td>
<td>124</td>
<td>Low</td>
<td>-1.202 ns</td>
<td>0.407 ns</td>
<td>Low</td>
<td>-1.084 ns</td>
<td>1.272 ns</td>
</tr>
<tr>
<td>Profile 4</td>
<td>594</td>
<td>Moderate</td>
<td>-4.142***</td>
<td>1.695 ns</td>
<td>Moderate</td>
<td>-1.118 ns</td>
<td>2.054*</td>
</tr>
<tr>
<td>Profile 5</td>
<td>207</td>
<td>Moderate</td>
<td>-3.024**</td>
<td>1.329 ns</td>
<td>Moderate</td>
<td>-1.234 ns</td>
<td>1.662 ns</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; *** p<.001; ns = no significant change over time

